30 research outputs found

    The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations

    Get PDF
    The Sentinel-3 Mission Performance Centre (S3MPC) is tasked by the European Space Agency (ESA) to monitor the health of the Copernicus Sentinel-3 satellites and ensure a high data quality to the users. This paper deals exclusively with the effort devoted to the altimeter and microwave radiometer, both components of the Surface Topography Mission (STM). The altimeters on Sentinel-3A and -3B are the first to operate in delay-Doppler or SAR mode over all Earth surfaces, which enables better spatial resolution of the signal in the along-track direction and improved noise reduction through multi-looking, whilst the radiometer is a two-channel nadir-viewing system. There are regular routine assessments of the instruments through investigation of telemetered housekeeping data, calibrations over selected sites and comparisons of geophysical retrievals with models, in situ data and other satellite systems. These are performed both to monitor the daily production, assessing the uncertainties and errors on the estimates, and also to characterize the long-term performance for climate science applications. This is critical because an undetected drift in performance could be misconstrued as a climate variation. As the data are used by the Copernicus Services (e.g., CMEMS, Global Land Monitoring Services) and by the research community over open ocean, coastal waters, sea ice, land ice, rivers and lakes, the validation activities encompass all these domains, with regular reports openly available. The S3MPC is also in charge of preparing improvements to the processing, and of the development and tuning of algorithms to improve their accuracy. This paper is thus the first refereed publication to bring together the analysis of SAR altimetry across all these different domains to highlight the benefits and existing challenges

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos

    The power of comparative and developmental studies for mouse models of Down syndrome

    Get PDF
    Since the genetic basis for Down syndrome (DS) was described, understanding the causative relationship between genes at dosage imbalance and phenotypes associated with DS has been a principal goal of researchers studying trisomy 21 (Ts21). Though inferences to the gene-phenotype relationship in humans have been made, evidence linking a specific gene or region to a particular congenital phenotype has been limited. To further understand the genetic basis for DS phenotypes, mouse models with three copies of human chromosome 21 (Hsa21) orthologs have been developed. Mouse models offer access to every tissue at each stage of development, opportunity to manipulate genetic content, and ability to precisely quantify phenotypes. Numerous approaches to recreate trisomic composition and analyze phenotypes similar to DS have resulted in diverse trisomic mouse models. A murine intraspecies comparative analysis of different genetic models of Ts21 and specific DS phenotypes reveals the complexity of trisomy and important considerations to understand the etiology of and strategies for amelioration or prevention of trisomic phenotypes. By analyzing individual phenotypes in different mouse models throughout development, such as neurologic, craniofacial, and cardiovascular abnormalities, greater insight into the gene-phenotype relationship has been demonstrated. In this review we discuss how phenotype-based comparisons between DS mouse models have been useful in analyzing the relationship of trisomy and DS phenotypes

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    Behavioural responses to unexpected changes in reward quality

    Get PDF
    Successive negative contrast (SNC) effects are changes in anticipatory or consummatory behaviour when animals unexpectedly receive a lower value reward than they have received previously. SNC effects are often assumed to reflect frustration and appear to be influenced by background affective state. However, alternative explanations of SNC, such as the functional-search hypothesis, do not necessarily imply an aversive affective state. We tested 18 dogs in a SNC paradigm using a patch foraging task. Dogs were tested in two conditions, once with the low value reward in all of five trials (unshifted) and once when reward value was altered between high and low (shifted). Following a reward downshift, subjects showed a SNC effect by switching significantly more often between patches compared to the unshifted condition. However, approach latency, foraging time and quantity consumed did not differ between conditions, suggesting non-affective functional search behaviour rather than frustration. There was no relationship between strength of SNC and anxiety-related behaviours as measured in a novel object test and a personality questionnaire (C-BARQ). However, associations with the C-BARQ scores for Trainability and Stranger directed aggression suggest a possible link with behavioural flexibility and coping style. While reward quality clearly affects incentive motivation, the relationship between SNC, frustration and background affective state requires further exploration

    ペルオキシソームマク タンパクシツ ユソウ ニ カンヨスル peroxin Pex3p ト Pex19p ト ノ ソウゴ サヨウ ニ カンスル ケンキュウ

    Get PDF
    京都大学0048新制・課程博士博士(薬学)甲第13749号薬博第637号新制||薬||220(附属図書館)UT51-2008-C665京都大学大学院薬学研究科創薬科学専攻(主査)教授 加藤 博章, 教授 松﨑 勝巳, 教授 半田 哲郎学位規則第4条第1項該当Doctor of Pharmaceutical SciencesKyoto UniversityDA

    Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions

    No full text
    Psychopharmacology (Berl). 2010 Sep;211(4):403-14. Epub 2010 Jun 30. Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Piras G, Giorgi O, Corda MG. Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy. INTRODUCTION: The selective breeding of Roman low-avoidance (RLA) and high-avoidance (RHA) rats for, respectively, poor versus rapid acquisition of active avoidance in a shuttle-box has produced two phenotypes that differ drastically in the reactivity to stressful stimuli: in tests used to assess emotionality, RLA rats display passive ("reactive") coping and robust hypothalamus-pituitary-adrenal (HPA) axis reactivity, whereas RHA rats show proactive coping and blunted HPA axis responses. The behavioral and neuroendocrine traits that distinguish these lines suggest that RLA rats may be prone, whereas RHA rats may be resistant to develop depression-like behavior when exposed to stressful experimental conditions. OBJECTIVE AND METHODS: To evaluate the performance of the Roman lines in the forced swim test, immobility, climbing, and swimming were assessed under baseline conditions (i.e., pretest in naïve animals or test after the administration of vehicle), and after subacute treatment with desipramine, fluoxetine, and chlorimipramine. RESULTS: Under baseline conditions, RLA rats displayed greater immobility and fewer climbing counts than RHA rats. In RLA rats, desipramine, fluoxetine, and chlorimipramine decreased immobility; moreover, desipramine and chlorimipramine increased climbing, whereas fluoxetine increased swimming. In RHA rats, none of these drugs affected immobility, swimming, or climbing. CONCLUSIONS: RLA and RHA rats represent two divergent phenotypes respectively susceptible and resistant to display depression-like behavior in the forced swim test. Hence, comparative studies in these lines may help to develop novel working hypotheses on the relationships among genotype, temperament traits, and neural mechanisms underlying the vulnerability or resistance to stress-induced depression in humans. PMID: 20589496 [PubMed - indexed for MEDLINE
    corecore